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 suppose that you take a measurement x1 of some real-valued 
quantity (distance, velocity, etc.)

 your friend takes a second measurement x2 of the same 
quantity

 after comparing the measurements you find that

 what is the best estimate of the true value μ?
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 suppose that an appropriate noise model for the 
measurements is

where       is zero-mean Gaussian noise with variance
 because two different people are performing the 

measurements it might be reasonable to assume that x1 and x2
are independent 
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x = 5;

x1 = x + randn(1, 1000);   % noise variance = 1

x2 = x + randn(1, 1000);   % noise variance = 1

mu2 = (x1 + x2) / 2;

bins = 1:0.2:9;

hist(x1, bins);

hist(x2, bins);

hist(mu2, bins);
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var(x1) = 0.9979 var(x2) = 0.9972
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var(mu2) = 0.4942
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 suppose the precision of your measurements is much worse 
than that of your friend

 consider the measurement noise model

where       is zero-mean Gaussian noise with variance
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x = 7;

x1 = x + 3 * randn(1, 1000);   % noise variance = 3*3 = 9

x2 = x + randn(1, 1000);       % noise variance = 1

mu2 = (x1 + x2) / 2;

bins = -2:0.2:18;

hist(x1, bins);

hist(x2, bins);

hist(mu2, bins);
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var(x1) = 8.9166 var(x2) = 0.9530
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var(mu2) = 2.4317
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 is the average the optimal estimate of the combined 
measurements?
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 instead of ordinary averaging, consider a weighted average

where
 the variance of a random variable is defined as 

where E[X] is the expected value of X
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 informally, the expected value of a random variable X is the 
long-run average observed value of X

 formally defined as

 properties

Expected Value
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 because x1 and x2 are independent

and

are also independent; thus

 finally   

0])][E])([E[(E 2211  xxxx

])[E( 11 xx  ])[E( 22 xx 

2
2

2
2

2
1

2
1)var(  



Variance of Weighted Average

3/16/201816

 because x1 and x2 are independent

and

are also independent; thus

 finally   
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 one way to choose the weighting values is to choose the 
weights such that the variance is minimized
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 thus, the minimum variance estimate is
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x = 7;

x1 = x + 3 * randn(1, 1000);   % noise variance = 3*3 = 9

x2 = x + randn(1, 1000);       % noise variance = 1

w = 9 / (9 + 1);

mu2 = (1 – w) * x1 + w * x2;

bins = -2:0.2:18;

hist(x1, bins);

hist(x2, bins);

hist(mu2, bins);
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var(mu2) = 2.4317 var(mu2) = 0.8925

mu2=0.5*x1 + 0.5*x2 mu2=0.1*x1 + 0.9*x2


